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Abstract
We have extended our supercomputer-enabled Monte Carlo simulations of
hopping transport in completely disordered 2D conductors to the case of
substantial electron–electron Coulomb interaction. Such interaction may
not only suppress the average value of hopping current, but also affect its
fluctuations rather substantially. In particular, the spectral density SI ( f ) of
current fluctuations exhibits, at sufficiently low frequencies, a 1/ f -like increase
which approximately follows the Hooge scaling, even at vanishing temperature.
At higher f , there is a crossover to a broad range of frequencies in which
SI ( f ) is nearly constant, hence allowing characterization of the current noise
by the effective Fano factor F ≡ SI ( f )/2e 〈I 〉. For sufficiently large conductor
samples and low temperatures, the Fano factor is suppressed below the Schottky
value (F = 1), scaling with the length L of the conductor as F = (Lc/L)α .
The exponent α is significantly affected by the Coulomb interaction effects,
changing from α = 0.76 ± 0.08 when such effects are negligible to virtually
unity when they are substantial. The scaling parameter Lc, interpreted as
the average percolation cluster length along the electric field direction, scales
as Lc ∝ E−(0.98±0.08) when Coulomb interaction effects are negligible and
Lc ∝ E−(1.26±0.15) when such effects are substantial, in good agreement with
estimates based on the theory of directed percolation.

1. Introduction

The hopping transport of quasi-localized electrons in disordered conductors and
semiconductors has been studied for many years; for comprehensive reviews, see [1–3]. The
more recent observation [4, 5] that hopping transport may implement the quasi-continuous
(‘sub-electron’) charge transfer, hence providing a possible solution to the random background
charge problem in single-electronics [6], has renewed interest in this phenomenon, with an
emphasis on the shot noise of the hopping current [7–10]. The objective of this paper is to
present the results of an extension of our previous numerical studies of 2D hopping [9, 10]
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to the case of substantial Coulomb interaction of hopping electrons. Just as in the case of
negligible interaction [10], the use of advanced algorithms of spectral density calculation [11]
and modern supercomputer facilities has allowed us not only to obtain more complete and exact
results for average characteristics of hopping transport (including the dependence of the DC
current on temperature and electric field), but also to calculate the spectral density of current
fluctuations at low temperatures.

In order to explain our new findings, we have to start with a brief summary of the basic
prior results.

1.1. Coulomb gap

Most theoretical discussions of the Coulomb interaction effects on hopping are based on
the notion of the Coulomb gap in the electron energy spectrum. Generally speaking,
substantial Coulomb interaction makes the single-particle energy meaningless. However, the
introduction [2] of the effective single-particle energy ε, which includes the contribution from
the Coulomb interaction with other electrons, immediately leads to a ‘soft’ gap in the single-
particle density of states ν (ε) at ε ≈ µ, where µ is the Fermi level. In the case of 2D
conductors with the 3D Coulomb interaction law, which is the focus of our current work,
simple arguments [2, 3] yield

ν (ε) = c
κ2

e4
|ε − µ| , (1)

where e is electron charge, κ is the dielectric constant of the insulating environment and c is
a dimensionless constant. Equation (1) is valid only when the 2D density of states ν (ε) is
much smaller than the ‘seed’ density of states ν0; for larger ε there is a continuous crossover
to ν0. The effective width � of the Coulomb gap can be estimated from the natural condition
ν (�) = ν0, resulting in

� = e4ν0

cκ2
. (2)

A self-consistent approach [3] allows a more rigorous evaluation of the Coulomb gap width,
giving c = 2/π .

1.2. DC transport characteristics

At low applied electric fields E , the average current 〈I 〉 is a linear function of E , i.e. the 2D
(‘sheet’) DC conductivity σ (T, E, χ) ≡ 〈I 〉 /EW (where W is the width of the conductor)
is independent of E . For not very high temperatures (T � T0, where kBT0 ≡ 1/ν0a2 and a
is the localization radius), the ratio σ/σ0 (where σ0 is a constant characterizing the sample)
depends only on two dimensionless parameters: the ratio T/T0 and parameter χ ≡ e2ν0a/κ

characterizing the Coulomb interaction strength. The relation between these two parameters
determines two possible variable-range hopping transport regimes.

If the Coulomb interaction is weak (χ3 � T/T0), the average length r (T, E, χ) of the
so-called ‘critical hops’, which connect percolation clusters and hence determine the current,
may be found from the Mott theory [1–3]:

r (T, 0, 0) ∝
(

T0

T

)1/3

a. (3)

In this case the conductivity is [1–3]

σ

σ0
≈ A (T, 0, 0) exp

[
−

(
B (T, 0, 0)

T0

T

)1/3
]

, (4)
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where A (T, E, χ) is a dimensionless, model-dependent, slow function of its arguments, while
B (T, E, χ) is usually treated as a constant, but in general may be also a weakly dependent
function of its arguments.

On the other hand, if the Coulomb interaction is strong (χ3 � T/T0), the critical hops
are longer [2, 3]:

r (T, 0, χ) ∝
(

χT0

T

)1/2

a, (5)

and the DC conductivity is suppressed [2, 3]:

σ

σ0
≈ A (T, 0, χ) exp

[
−

(
B (T, 0, χ)

χT0

T

)1/2
]

. (6)

In the case of relatively high electric fields (E � ET , where ET ≡ kBT/ea), the DC
current is a highly nonlinear (exponential) function of the applied electric field E . If the field
is not extremely high (E � E0 ≡ 1/eν0a3), i.e. in the variable-range hopping domain, we can
again distinguish two different transport regimes.

If the Coulomb interaction is weak (χ3 � E/E0), one can neglect the effects of Coulomb
interaction to evaluate the critical hop length

r (0, E, 0) ∝
(

E0

E

)1/3

a. (7)

In this case, the DC conductivity is [12–16]

σ

σ0
≈ A (0, E, 0) exp

[
−

(
B (0, E, 0)

E0

E

)1/3
]

. (8)

In the opposite limit (χ3 � E/E0),

r (0, E, χ) ∝
(

χ E0

E

)1/2

a, (9)

and the DC conductivity is lower [15]:

σ

σ0
≈ A (0, E, χ) exp

[
−

(
B (0, E, χ)

χ E0

E

)1/2
]

. (10)

1.3. Current fluctuations

At low temperatures1, the dynamical fluctuations of the current flowing through a mesoscopic
system are more sensitive to the charge transport mechanism peculiarities than the average
transport characteristics, and therefore may provide additional information about the
conduction physics [17–19]. If we refrain from the discussion of the quantum fluctuations
at extremely high frequencies, two basic frequency ranges have to be distinguished. At very
low frequencies, one can expect the 1/ f -type noise that is observed experimentally in a wide
variety of conductors; see, for example, [17]. In most cases the noise scales approximately
in accordance with the phenomenological Hooge formula [17, 20]. For a 2D conductor, this
formula can be presented as

SI ( f )

〈I 〉2 = a2

LW

C ( f )

f
, (11)

1 In the opposite limit of thermal noise, the broadband current fluctuations are described by the fluctuation–dissipation
theorem and hence do not provide any information not already available from average transport characteristics.
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where SI ( f ) is the current spectral density, L is the length of the conductor (along the current
flow) and C ( f ) is either a dimensionless constant or a weak function of the observation
frequency f . In particular, many studies [17] have found that C ( f ) / f ∝ 1/ f p, where p is
typically between 1 and 2. For the particular case of hopping conduction, two major theories of
1/ f noise have been suggested, based, respectively, on ‘carrier number’ fluctuations [21–23]
and ‘mobility’ fluctuations [24, 25] as possible origins of the noise. Unfortunately, both
theories have been developed for the case of substantially nonvanishing temperatures, for
which an accurate numerical study of noise is difficult even with currently available advanced
simulation algorithms and supercomputer resources.

At relatively high frequencies, the noise spectral density is a very slow (practically
constant) function of f , and may be considered as a mixture of thermal fluctuations and shot
noise. In the most interesting case of sufficiently low temperatures, the thermal fluctuations are
negligible, and the broadband fluctuations are completely due to electric charge discreteness
(shot noise).

An emphasis of most recent studies has been on the suppression of the shot noise with
respect to its Schottky value 2e 〈I 〉. In particular, such suppression is a necessary condition for
quasi-continuous charge transfer at relatively high frequencies [4, 5]. If the current spectral
density SI ( f ) is flat at f → 0, it may be characterized by the Fano factor

F ≡ SI (0)

2e 〈I 〉 , (12)

so that the term ‘shot noise suppression’ means that F < 1. Previous theoretical studies of shot
noise at hopping in artificial (space-ordered) 1D [7, 26] and (both space-ordered and random)
2D [9, 10] systems have shown that the shot noise may be, indeed, suppressed, obeying

F =
(

Lc

L

)α

, L � Lc, (13)

where Lc is a scaling constant interpreted as the average percolation cluster length (i.e. the
average distance separating critical hops [2, 27]) and α is a positive exponent. In fact, at T → 0
in the limit of negligible Coulomb interactions, our prior results [10] show that Lc obeys the
law

Lc = J

(
E0

E

)µ

a, (14)

where J is a dimensionless constant of the order of 1, and the value of the numerical exponent
is µ = 0.98 ± 0.08, consistent with the estimate µ ≈ 0.91 based on directed percolation
theory [10, 27–29].

Considering a very long conductor, one might suspect that the electron motion in distant
parts should not be correlated. This assumption immediately leads to α = 1 [19]. However,
both analytical and numerical results [7, 26] show that at 1D hopping without Coulomb
interaction, α may be as low as 1/2. This nontrivial result may be interpreted as a consequence
of an essentially infinite correlation length in 1D conductors, due to the on-site interaction
of hopping electrons. Even more surprisingly, the exponent α may be substantially below 1
even in 2D conductors. For systems on a regular lattice, and without the Coulomb interaction,
numerical modelling [9] yields α = 0.85±0.02. In our recent work [10], this finding has been
confirmed for 2D hopping in conductors with completely random distribution of localized sites
both in space and in energy. Our most accurate result was α = 0.76 ± 0.08, i.e. significantly
below 1.

It has not been immediately clear how the inclusion of Coulomb interaction effects might
affect this result. For 1D hopping with increasing strength of the Coulomb interaction,
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numerical results [7] show α crossing over from nearly 1/2 up to 1. The similar behaviour
might be expected for 2D hopping, because the long-range correlations, apparently responsible
for the difference between α and 1, should be suppressed by Coulomb interaction effects,
provided that the conductor length L is larger than a certain crossover length determined by
the interaction constant χ . Unfortunately, recent experiments [8, 30, 31] could not help in
answering this question; while giving a reliable confirmation of the shot noise suppression
in longer conductors, their accuracy is not sufficient to resolve a possible (relatively minor)
deviation of α from 1.

The resolution of the problem of shot noise suppression in long conductors has been the
main motivation for the numerical experiment described in this paper. However, since the
calculation of DC transport characteristics is computationally much less demanding than that
of current noise, we have used this opportunity to obtain accurate values for the slow functions
A and B for the same model of 2D hopping.

2. Model

We have studied broad 2D rectangular conductors (W � Lc) with ‘open’ boundary conditions
on the interfaces with well-conducting electrodes [9, 10]. The conductors are assumed to be
‘fully frustrated’,with a large number of localized sites randomly distributed over the conductor
area. At the sites, the corresponding electron ‘seed’ eigenenergies ε(0) are also random, being
uniformly distributed over a sufficiently broad energy band 2B , so that the 2D density of states
ν0 is constant at all energies relevant for conduction.

The carriers are permitted to hop from any site j to any other site k with the rate

γ jk = 
 jk exp
(
−r jk

a

)
, (15)

where r jk is the site separation distance and 
 jk contains the energy dependence (see below).
Such exponential dependence on the length of a hop is standard for virtually all theoretical
studies of hopping2. Following our prior work [9, 10], we take equation (15) literally even at
small distances r jk ∼ a. The energy dependence of 
 jk is given by the usual formula [10]

h̄
 jk
(
�U jk

) = g
�U jk

1 − exp
(−�U jk/kBT

) , (16)

where g is a dimensionless parameter which determines the 2D conductivity scale σ0 ≡ ge2/h̄,3

while �U jk is the difference of the total system energy before and after the hop from site j to
site k:

�U jk ≡ U j − Uk + eEr jk . (17)

Here U is the total internal energy of the system, including the effects of Coulomb interaction:

U ≡
∑

l

[
nlε

(0)

l +
e2

2κ

(
nl − 1

2

)∑
l′ �=l

(
nl′ − 1

2

)
G (rl, rl′ )

]
, (18)

where nl = 0 or 1 is the occupation number of the lth localized site. (Similar to earlier
studies [2, 3] of the Coulomb effect on hopping, we keep the system electroneutral by adding

2 Notice that in contrast with some prior works, we do not include the factor 2 into the definition of the exponent.
This difference should be kept in mind at the level of result comparison.
3 Parameter g must be small (g � 1) in order to keep coherent quantum effects (leading to weak localization and
metal-to-insulator transition) negligible.



2018 Y A Kinkhabwala et al

a background charge of e/2 to each site.) G
(
r j , rk

)
is the electrostatic Green’s function

G
(
r j , rk

) =
∞∑

n=−∞


 1√(

2nL + xk − x j
)2

+
(
yk − y j

)2

− 1√(
2nL + xk + x j

)2
+

(
yk − y j

)2


 , (19)

which includes the effect of image charges representing the screening effect of external
electrodes modelled as ideally conducting semi-spaces.

For practical calculations, we do not need to evaluate U from equation (18), because this
equation may be used to rewrite equation (17) in the explicit form

�U jk = ε
(0)
j − ε

(0)
k + eEr jk +

e2

κ

∑
l �= j

(
nl − 1

2

)
G

(
r j , rl

)

− e2

κ

∑
l �=k

(
nl − 1

2

)
G (rk, rl) +

e2

κ
G

(
r j , rk

)
. (20)

The numerical study has been carried out by using the classical Monte Carlo technique
based on the algorithm suggested by Bakhvalov et al [32], which has become the de
facto standard for single-electron tunneling simulations [33]. In most cases, the calculated
variables are averaged over several (many) conductors with independent random distributions
of localized sites in space and energy, but the same macroscopic parameters. The spectral
density of current fluctuations is calculated using the advanced algorithm described in detail
in [11].

3. Results

In order to classify the physical regimes of hopping behaviour, it is useful to note that our
model has four relevant energy scales:

(i) 1/ν0a2 describes the energy spectrum discreteness,
(ii) eEa is the scale of the electric field strength,

(iii) e2/κa = χ/ν0a2 characterizes the Coulomb interaction strength, and
(iv) kBT is the scale of thermal fluctuations.

Our primary interest is in transport, especially its dependence on the applied electric field
E , so that instead of comparing eEa with the other three energy scales, we prefer to speak
about three characteristic values of electric field, which should be compared with the actual
E :

ea ET ≡ kBT = T

T0
× 1

ν0a2
, ea E0 ≡ 1

ν0a2
, ea Ec ≡ e2

κa
= χ × 1

ν0a2
. (21)

We are not interested in the case of extremely high temperatures, so that we will always assume
that T � T0, i.e. ET � E0. On the other hand, the relative position of points Ec and E0 on
the field axis is determined by the normalized parameter of the Coulomb interaction strength:

Ec/E0 = χ ≡ e2ν0a/κ. (22)
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3.1. Coulomb gap

In order to understand the peculiarities of Coulomb interaction effects in our model, we started
with a calculation of the single-particle density of states for the case of T = 0 and E = 0.
Indeed, in all the Coulomb gap analyses we are aware of, the electrostatic boundary effects
have been ignored by assuming

G
(
r j , rk

) = 1

r jk
. (23)

On the contrary, in our Green’s function (19) the image charge contribution may be substantial,
so it has been essential to understand how this contribution affects the Coulomb gap formation.

Following the Coulomb gap literature [2, 3], we define the effective single-particle energy
of an electron on site j as

ε j ≡ ε
(0)
j +

e2

κ

∑
l �= j

(
nl − 1

2

)
G

(
r j , rl

)
. (24)

Note that our basic equation (20) may be conveniently rewritten in terms of ε j :

�U jk = ε j − εk + eEr jk +
e2

κ
G

(
r j , rk

)
. (25)

The calculations of the single-particle density of states in the ground state of a system (in
which all �U jk are negative) require its ‘annealing’. In our case the annealing is facilitated
by the fact that our model allows hopping between any pair of sites. This is why the natural
relaxation of the conductor at T = 0 and E = 0 gave the results undistinguishable from those
obtained after an explicit annealing procedure (see, for example, [34]). Since the Monte Carlo
algorithm used is not slowed down when all the transition rates are very low, the relaxation
could be simulated very quickly.

Figure 1 shows our typical results for the single-particle density of states. The soft
Coulomb gap at sufficiently low energies is clearly visible. The effects of screening by the
external electrodes are shown in figure 1(a). The data labelled ‘screened’ correspond to the
full Green’s function (19), which includes the electrostatic screening effects of the external
electrodes, while the results for the simple approximation (23) are marked ‘unscreened’. The
results show that for conductors of sufficiently large size, screening has virtually no effect on
the Coulomb gap formation. In this limit, the linear part of the ν (ε) dependence corresponds
to equation (1) with the self-consistent equation result c = 2/π ≈ 0.64 cited above.

Figure 1(b) shows the single-particle density of states for three different values of an
important technical parameter, the half-bandwidth B of the seed energy band. One can see
that the value of B does not affect the single-particle density of states well inside the Coulomb
gap, but may influence the results at larger energies, so that B should always be chosen properly
in each particular case.

All the results presented below have been obtained for conductor size L × W and energy
bandwidth 2B so large that the effects of screening and finite number of states are negligible.

3.2. DC transport characteristics

Figure 2 shows our Monte Carlo results for the DC conductivity σ as a function of temperature
T for two values of the Coulomb interaction strength parameter χ . The results for χ = 0
coincide with those discussed in our previous work [10]. In particular, for sufficiently low
temperatures (ET � E0), the Monte Carlo data may be fitted by equation (4) using a simple
power law in temperature T to estimate the pre-exponential (model-dependent) function
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Figure 1. Single-particle density of states ν (ε) /ν0 averaged over a large number of conductors at
χ = 0.5, T = 0 and E = 0 for (a) several conductor lengths L for large width W/a = 40 at fixed
half-bandwidth of the seed energy band (B = 1) with and without the screening due to electrostatic
boundary effects, and for (b) several values of the half-bandwidth B for sufficiently large conductors
with screening. The straight lines correspond to equation (1) with α = 2/π ≈ 0.64. Curves are
only guides for the eye.

A (T, 0, 0) = (23.4 ± 1.3) (T/T0)
(0.68±0.04) and a constant for B (T, 0, 0) = 2.0 ± 0.2.

(See [10] for a detailed discussion of this result.)
On the other hand, the results for χ = 0.5 show that in the case of substantial Coulomb

interaction, the temperature dependence of conductance at low temperatures (T/T0 � χ3)
follows the Efros–Shklovskii variable-range hopping result (6). The best fitting gives
A (T, 0, 0.5) = (10.7 ± 1.3) (T/T0)

(1.02±0.12) and B (T, 0, 0.5) = 1.4 ± 0.3. This is in a
reasonable agreement with the following values for B (in our units): 3.1 following from an
approximate analysis based on percolation theory [35], 4.8 found by evaluating an approximate
integral over critical hops using a lattice model [36] and 2.9 obtained for a narrower range
of temperatures using numerical (Monte Carlo) simulations on a uniform periodic lattice
with randomly distributed energies [37]. (Unfortunately, the above values had no uncertainty
reported.) The difference between our result and the reported values is probably due to the
differences between details of the used models; see section 2 above.

For very high temperatures (ET � E0), the exponential temperature dependence of
variable-range hopping theory cannot give a good description of the results, because in this
case transport is dominated by very short hops with lengths of the order of the localization
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Figure 2. Linear DC conductivity σ for negligible Coulomb interaction and finite Coulomb
interaction as a function of temperature. Points show the Monte Carlo results which were obtained
by the direct averaging of current calculated for a large number (from 20 to 96) of conductors with
a random distribution of localized states, but the same macroscopic parameters. The sample size
ranged from 20a ×14a to 80a ×50a, depending on χ and T . Thin dashed lines are only guides for
the eye, while the thick solid lines correspond to the best fits of the data by equations (4) and (6).

Figure 3. Nonlinear DC conductivity σ as a function of electric field E for several values of
temperature T and Coulomb interaction strength χ . Points are Monte Carlo results averaged over a
large number (from 20 to 96) of conductors of the same size (ranging from 20×14a2 to 800×500a2 ,
depending on χ , T and E). Solid symbols show results for T = 0, while open symbols correspond
to T �= 0. Thin dashed lines are only guides for the eye. Thick solid lines are the fits to the T = 0
results using equations (8) and (10).

radius. However, even at these temperatures, Coulomb interaction effects lead to a drop in DC
conductivity.

For higher electric fields (E � ET ), the DC current 〈I 〉 increases faster than E , and
therefore the DC conductivity, defined as σ ≡ 〈I 〉 /EW , becomes nonlinear and begins to
increase with E ; see figure 3. (More extensive data for the case of negligible Coulomb
interaction, χ = 0, are shown in figure 2 of [10].)
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Figure 4. Spectral density SI (ω) of current fluctuations at fixed Coulomb interaction strength
χ = 0.5, as a function of observation frequency ω measured in units of ω0 ≡ g/h̄ν0a2, for several
values of conductor length L . Each point represents data averaged over 48 conductor samples at
fixed parameters (χ = 0.5, T = 0 and E/E0 = 0.07). Small points show results for W/a = 30,
while open squares are for W/a = 60 (at L/a = 40). Thin dashed lines are only guides for the
eye.

For T → 0, our results [10] for the case of negligible Coulomb interaction (χ = 0) exhibit
an exponential field dependence for not very high fields (ET � E � E0) and may be fitted
for the entire range of fields considered by equation (8) using (analogously to the low-field
case) a simple power law in field E to estimate the pre-exponential (model-dependent) function
A (0, E, 0) = (9.2 ± 0.6) (E/E0)

(0.80±0.02) along with constant B (0, E, 0) = 0.65 ± 0.02.
(See [10] for a detailed discussion of this result.) The corresponding results for χ = 0.1
and χ = 0.5 show that increasing Coulomb interaction strength suppresses the nonlinear DC
conductivity, just as in the low-field case. These results may be well fitted by equation (10) with
A (0, E, 0.1) = (2.3 ± 0.6) (E/E0)

(0.87±0.07) and B (0, E, 0.1) = 0.96±0.05 for χ = 0.1 and
A (0, E, 0.5) = (3.0 ± 0.4) (E/E0)

(0.72±0.07) and B (0, E, 0.5) = 1.68 ± 0.07 for χ = 0.5. It
is possible that any differences due to fitting reflect a (weak) systematic dependence on χ .

The results for very high electric fields, E � E0 (near the localization limit), do not obey
the variable-range hopping theory, due to very short hops of the order of the localization radius
which dominate the transport in this case. Note, however, that even within this range the DC
conductivity decreases with increasing Coulomb interaction strength.

To summarize our DC transport results, we see a very reasonable agreement with variable-
range hopping theory within appropriate parameter ranges. Moreover, we believe that our
supercomputer-enablednumerical modelling has given accurate parameters for the coefficients
of these theories for our particular model.

3.3. Current fluctuations

3.3.1. 1/ f noise. Figure 4 shows typical results of our calculations of current noise at zero
temperature, finite Coulomb interaction strength and fixed electric field, for several values of
conductor length. Of particular note is that in sharp contrast with the negligible Coulomb
interaction case [10], we do observe a 1/ f -type noise at f → 0. The frequency fk of the 1/ f
noise ‘knee’ (the crossover from this noise to a quasi-flat spectral density) is relatively constant
(or at most grows slowly with decreasing conductor length). This is what could be expected
from the comparison of equations (11) and (13) if α ∼ 1. (For sufficiently large conductor
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Figure 5. Spectral density SI (ω) of current fluctuations at T = 0 and χ = 0.5, normalized to the
Hooge scaling factor a2 〈I 〉2 /LWω0, as a function of observation frequency ω (measured in units
of ω0) for several values of electric field. Each point represents data averaged over 48 conductor
samples of the same size (ranging from 20a × 14a to 120a × 60a, depending on E). Lines are
only guides for the eye. For E/E0 = 0.07, the results are plotted for a few conductor sizes,
50a × 30a, 60a × 30a and 70a × 30a (small points) and 40a × 60a (open squares). The results
imply that the 1/ f -type noise (in this normalization) is virtually size- and field-independent.

width W , 〈I 〉 is proportional to W , so that fk should also be independent of W as well, which
is consistent with our results for different width in figure 4.)

In figure 5, the calculation results are plotted in the form allowing their straightforward
comparison with the Hooge scaling [17, 20]. Indeed in these coordinates, equation (11) with
C( f )/ f ∝ 1/ f p would give a straight line dropping with slope p. We see that our data
for f → 0 are compatible with this formula, with p ∼ 1.3. This value is close to the one
calculated in [38] using a rather different model of hopping, apparently more adequate near the
metal–insulator transition. The result is also compatible with recent experiments [39] which
indicate an increase of p from approximately 1 on the metallic side of such transition to above
1 on its dielectric side.

Unfortunately, more accurate determination of the noise spectral density SI ( f ) for
sufficiently small frequencies and/or finite temperatures has been out of our reach, despite
the use of advanced averaging algorithms [10] and unique supercomputer resources. As a
result, at this stage we cannot compare our results with the existing theories of 1/ f noise at
hopping [21–25, 40].

3.3.2. Fano factor and cluster length. If the low-frequency spectral density is constant (as
it is for hopping at negligible Coulomb interaction [7, 9, 10]), it is naturally characterized
by the Fano factor; see equation (12). In the presence of a 1/ f -type noise, the definition of
the Fano factor is less obvious. However, figures 4 and 5 show that the fluctuation spectrum
has an exponentially broad plateau between the 1/ f noise knee and a crossover to another,
high-frequency value. (The latter crossover at higher frequencies exists even in the absence of
the Coulomb interaction; see [10] for a more detailed discussion.) The large length of these
plateaus gives a motivation for the generalization of the Fano factor definition:

F ≡ SI ( f p)

2e 〈I 〉 , (26)
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Figure 6. Average Fano factor F and its high-frequency counterpart F∞ (equations (26) and (27),
respectively) as functions of conductor length L normalized to: (a) the localization length a, and (b)
the scaling lengths Lc (for F) and Lh (for F∞) (see figure 7 below), for two values of applied field
at χ = 0.5, T = 0 and W � Lc. Straight lines are the best fits to the data (using equations (13)
and (28)), while dashed curves are only guides for the eye.

where f p is any frequency between the 1/ f noise knee and the high-frequency crossover. In
addition, following [10], we may define a similar factor on the high-frequency plateau:

F∞ ≡ SI ( f → ∞)

2e 〈I 〉 . (27)

Figure 4 shows that neither of these factors depends on the sample width, at least for reasonably
large W . Figure 6 shows the dependence of these factors on conductor length L. The results
for F in the case of substantial Coulomb interactions agree well4 with equation (13) with
α ≈ 1, in contrast with the result α �= 1 for negligible interaction [9, 10]. The results for the
high-frequency counterpart F∞ agree well with the similar expression [10]

F∞ =
(

Lh

L

)β

, L � Lh, (28)

4 In the opposite limit L � Lc, when the number of hops necessary to cross the conductor is small, the Fano factor
saturates at a level below 1. At negligible Coulomb interaction, the saturation level [10] is close to 0.7, i.e. the value
consistent with the prior results for hopping through a parallel set of single sites, 〈F〉 = 0.75 [41], and two-site chains,
〈F〉 = 0.707 [42]. In the case of substantial Coulomb interaction, the Fano factor appears to saturate as well, though
at a level somewhat above that for the negligible Coulomb interaction, possibly at F → 1 when χ → ∞.
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Figure 7. The values of parameters Lc and Lh giving the best fitting of shot noise results for
equations (13) and (28), respectively, for sufficiently large conductors (L , W � Lc), as functions
of electric field at T = 0 for the cases of negligible (χ = 0, open squares and triangles) and
substantial (χ = 0.5, solid squares and triangles) Coulomb interaction. For comparison, circles
show the results for the simple direction-weighted average hop length along the electric field
direction (29). Dashed curves are only guides for the eye, while solid lines are the best fits using
the variable-range hopping and percolation theory predictions (see the text).

where, within the accuracy of our calculations, β = 1. This result is similar to that for
negligible Coulomb interaction [10], and may be interpreted as a result of ‘capacitive division’
of the discrete increments of externally measured charge jumps resulting from single-electron
hops through the system [43]. Figure 6(b) shows that both results can be collapsed onto a
universal scaling curve by the introduction of certain length scales: Lc for F and Lh for F∞.

In order to compare the corresponding length scales (Lc and Lh) with the proper measures
of hop length, we have calculated the direction-weighted average [10] along the field direction

x2
rmds ≡

∑
j,k x2

jk

∣∣H jk − Hkj

∣∣∑
j,k

∣∣H jk − Hkj

∣∣ , (29)

where x jk ≡ xk − x j = −xk j is the component of the j → k hop length along the applied field
direction, and H jk is the number of electrons making this hop during a certain time interval. For
not too high fields (ET � E � E0), the results in figure 7 for negligible Coulomb interaction
are in good agreement with the variable-range hopping scaling described by equation (7),
while for substantial Coulomb interaction they follow scaling similar to equation (9). In both
cases, Lh and xrmds have a similar behaviour in the entire range of studied fields. (See [10]
for a more detailed discussion on this result.) On the other hand, Lc, as determined from
equation (13), has a very different scaling, especially for lower fields (E � E0). Namely, at
negligible Coulomb interaction, the results for Lc follow the law (14) with J = 0.04 ± 0.01 and
µ = 0.98 ± 0.08 [10] (see section 1.3), while in the case of substantial Coulomb interactions
(χ = 0.5), Lc also obeys equation (14), but with J = 0.16 ± 0.02 and µ = 1.26 ± 0.15.

Following the analysis of [10], we may use the theory of directed percolation [27–29] to
predict the following scaling:

Lc ∝ 〈x〉
(

xc

|〈x〉 − xc|
)δ‖

, (30)
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where 〈x〉 is approximately equal to xrmds, xc is the critical hop length along the field, and the
critical index δ‖ should be close [29] to 1.73. Due to the exponential nature of the variable-
range hopping scaling, |〈x〉 − xc| ∼ a, and depending on the regime of hopping, we may use
the corresponding field scaling of equations (7) or (9) (see figure 7) to arrive at equation (14)
with either µ = 1

3 (1 + δ‖) ≈ 0.91 or µ = 1
2 (1 + δ‖) ≈ 1.37, respectively. These values are in

a very reasonable agreement with our simulation results, thus confirming the interpretation of
Lc as the average length of the directed percolation cluster.

In extremely high fields (E � E0), the length scales Lc and xrmds become comparable to
one another and both approach the localization radius a.

4. Discussion

To summarize, we have carried out numerical simulations of 2D hopping within a broad range
of temperature, electric field and Coulomb interaction strength. For average (DC) transport
characteristics, our results are in general agreement with the variable-range hopping theories,
except for the (model-dependent) cases of ‘ultra-high’ electric field and/or temperature, where
the hopping length becomes of the order of the localization radius.

For the spectrum of current fluctuations, our results are more significant. First, for the
case of significant Coulomb interaction we have obtained a reliable evidence of 1/ f -like
fluctuations, approximately obeying the Hooge scaling (11), even at T → 0. In hindsight,
this result does not seem too surprising. Due to the presence of Coulomb interaction, random
motion of the electrons during hopping transport generates a time-and space-varying Coulomb
field, with a quasi-white spectrum, even at T = 0. The effect of such a randomly changing
field on localized electrons aside from the hopping clusters should be qualitatively similar to
that of thermal fluctuations that may lead to the 1/ f noise, for example following one of the
scenarios described in [21–25]. Recent experiments for hopping in quasi-3D samples [44, 45],
showing a very slow change of 1/ f noise intensity at T → 0, seem qualitatively compatible
with this interpretation.

Our second important result is that in the presence of significant Coulomb interaction, the
quasi-white noise above the 1/ f noise knee is suppressed according to the scaling law (13)
with α = 1 (within the accuracy of our numerical experiment). This result is consistent with
the simple addition of mutually independent noise voltages generated by (conductor) sample
sections connected in series, and hence with the existence of a finite correlation length. On
the other hand, the results [10] for negligible Coulomb interactions give α = 0.76 ± 0.08 < 1,
and are inconsistent with the existence of such a length, at least on the scale of Lc. However,
in both cases the constant Lc, participating in the scaling law (13), may be interpreted as the
length between the critical hops, i.e. the directed percolation cluster length.
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